The equation of state in Standard Model

Tomasz Westwański

Institute of Physics, University of Silesia
Poland
The tree level Lagrangian. The phenomenological basis for the formulation of the Standard Model (MS) is given by the following empirical facts:
The tree level Lagrangian. The phenomenological basis for the formulation of the Standard Model (MS) is given by the following empirical facts:

- The $SU(2) \times U(1)$ family structure of the fermions: The fermions appear as families with left-handed doublets and right-handed singlets:

\[
\begin{align*}
&\begin{pmatrix} \nu_e \\ e \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}_L, \begin{pmatrix} u \\ d \end{pmatrix}_L, \begin{pmatrix} c \\ s \end{pmatrix}_L, \begin{pmatrix} t \\ b \end{pmatrix}_L \\
&\begin{pmatrix} e_R \\ \mu_R \end{pmatrix}, \begin{pmatrix} \tau_R \end{pmatrix}, \begin{pmatrix} u_R \end{pmatrix}, \begin{pmatrix} d_R \end{pmatrix}, \begin{pmatrix} c_R \end{pmatrix}, \begin{pmatrix} s_R \end{pmatrix}, \begin{pmatrix} t_R \end{pmatrix}, \begin{pmatrix} b_R \end{pmatrix}
\end{align*}
\]
Introduction.

• They can be characterized by the quantum numbers of weak isospin I, I_3 and the weak hypercharge Y.
Introduction.

- They can be characterized by the quantum numbers of weak isospin I, I_3 and the weak hypercharge Y.
- Between the quantum numbers classifying the fermions with respect to the group $SU(2) \times U(1)$ and their electric charges Q the Gell-Mann-Nishijima relation is valid.

$$Q = I_3 + \frac{Y}{2}$$
Introduction.

- They can be characterized by the quantum numbers of weak isospin I, I_3 and the weak hypercharge Y.

- Between the quantum numbers classifying the fermions with respect to the group $SU(2) \times U(1)$ and their electric charges Q the Gell-Mann-Nishijima relation is valid.

$$Q = I_3 + \frac{Y}{2}$$

- The existence of vector bosons: γ, W^+, W^-, Z.
Introduction.

- This empirical structure can be embedded in a gauge invariant field theory of the unified electromagnetic and weak interactions by interpreting $SU(2) \times U(1)$ as the group of gauge transformations under which the Lagrangian is invariant.
Introduction.

- This empirical structure can be embedded in a gauge invariant field theory of the unified electromagnetic and weak interactions by interpreting $SU(2) \times U(1)$ as the group of gauge transformations under which the Lagrangian is invariant.

- This full symmetry has to be broken by the Higgs mechanism down to the electromagnetic gauge symmetry; otherwise the W^{\pm}, Z bosons would also be massless.
Introduction.

- This empirical structure can be embedded in a gauge invariant field theory of the unified electromagnetic and weak interactions by interpreting $SU(2) \times U(1)$ as the group of gauge transformations under which the Lagrangian is invariant.

- This full symmetry has to be broken by the Higgs mechanism down to the electromagnetic gauge symmetry; otherwise the W^\pm, Z bosons would also be massless.

- The Standard Model requires a single scalar field (Higgs field) which is a doublet under $SU(2)$.

The equation of state in Standard Model – p.4/24
The classical Lagrangian.

The **electroweak Lagrangian** is given in the form:

\[\mathcal{L} = \mathcal{L}_G + \mathcal{L}_H + \mathcal{L}_F + \mathcal{L}_{\text{Yukawa}} \]
The classical Lagrangian.

The **electroweak Lagrangian** is given in the form:

\[\mathcal{L} = \mathcal{L}_G + \mathcal{L}_H + \mathcal{L}_F + \mathcal{L}_{\text{Yukawa}} \]

- **Gauge fields.**
 - \(SU(2) \times U(1) \) is a non-Abelian group which is generated by the isospin operators \(I_1, I_2, I_3 \) and the hypercharge \(Y \).
The classical Lagrangian.

The **electroweak Lagrangian** is given in the form:

\[\mathcal{L} = \mathcal{L}_G + \mathcal{L}_H + \mathcal{L}_F + \mathcal{L}_{\text{Yukawa}} \]

- **Gauge fields.**
 - \(SU(2) \times U(1) \) is a non-Abelian group which is generated by the isospin operators \(I_1, I_2, I_3 \) and the hypercharge \(Y \).
 - Each of these charges is associated with a vector field: a isotriplet of vector fields \(W_{\mu}^{1,2,3} \) with \(I^{1,2,3} \) and a isosinglet field \(B_{\mu} \) with \(Y \).
The classical Lagrangian.

- The field strength tensors:

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g_2 \varepsilon_{abc} W^b_\mu W^c_\nu \]

\[B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \]
The classical Lagrangian.

- The field strength tensors:

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g_2 \epsilon_{abc} W^b_\mu W^c_\nu \]

\[B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \]

- Parameters \(g_2 \) and \(g_1 \) denote the non-Abelian \(SU(2) \) gauge coupling constant and the Abelian \(U(1) \) coupling, respectively.
The classical Lagrangian.

- The field strength tensors:

\[W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g_2 \varepsilon_{abc} W^b_\mu W^c_\nu \]

\[B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \]

- Parameters \(g_2 \) and \(g_1 \) denote the non-Abelian \(SU(2) \) gauge coupling constant and the Abelian \(U(1) \) coupling, respectively.

- The gauge field Lagrangian:

\[\mathcal{L}_G = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu,a} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \]
The classical Lagrangian.

- Fermion fields and fermion-gauge interaction.
The classical Lagrangian.

- Fermion fields and fermion-gauge interaction.
- Lagrangian \mathcal{L}_F:

$$\mathcal{L}_F = \sum \bar{\psi}_L i \gamma^\mu D_\mu \psi_L + \sum \bar{\psi}_R i \gamma^\mu D_\mu \psi_R$$
The classical Lagrangian.

- Fermion fields and fermion-gauge interaction.
- Lagrangian \mathcal{L}_F:

$$\mathcal{L}_F = \sum \bar{\psi}_L i\gamma^\mu D_\mu \psi_L + \sum \bar{\psi}_R i\gamma^\mu D_\mu \psi_R$$

- The covariant derivative

$$D_\mu = \partial_\mu - ig_2 I_a W^a_\mu + ig_1 \frac{Y}{2} B_\mu$$
The classical Lagrangian.

- Fermion fields and fermion-gauge interaction.
- Lagrangian \mathcal{L}_F:

$$\mathcal{L}_F = \sum \bar{\psi}_L i \gamma^\mu D_\mu \psi_L + \sum \bar{\psi}_R i \gamma^\mu D_\mu \psi_R$$

- The covariant derivative

$$D_\mu = \partial_\mu - ig_2 I_a W^{a}_\mu + ig_1 \frac{Y}{2} B_\mu$$

For singlets $\Rightarrow I_a = 0.$
The classical Lagrangian.

- Higgs field, Higgs-gauge field and Yukawa coupling.
The classical Lagrangian.

- Higgs field, Higgs-gauge field and Yukawa coupling.
- A single complex scalar doublet field

$$\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix}$$
The classical Lagrangian.

- Higgs field, Higgs-gauge field and Yukawa coupling.
- A single complex scalar doublet field

\[\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix} \]

- Lagrangian \(\mathcal{L}_H \)

\[\mathcal{L}_H = (D_\mu \Phi)^+(D^\mu \Phi) - V(\Phi) \]
The classical Lagrangian.

- Higgs field, Higgs-gauge field and Yukawa coupling.
- A single complex scalar doublet field

\[\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix} \]

- Lagrangian \(\mathcal{L}_H \)

\[\mathcal{L}_H = (D_\mu \Phi)^+ (D^\mu \Phi) - V(\Phi) \]

with the covariant derivative

\[D_\mu = \partial_\mu - ig_2 I_a W_\mu^a + i \frac{g_1}{2} B_\mu \]
The classical Lagrangian.

- Potential $V(\Phi)$:

$$V(\Phi) = -\mu^2 \Phi^{+} \Phi + \frac{\lambda}{4} (\Phi^{+} \Phi)^2$$

where $v = \frac{2\mu}{\sqrt{\lambda}}$.
The classical Lagrangian.

- **Potential** $V(\Phi)$:

 $$V(\Phi) = -\mu^2 \Phi^+ \Phi + \frac{\lambda}{4}(\Phi^+ \Phi)^2$$

 where $\nu = \frac{2\mu}{\sqrt{\lambda}}$.

- **Field** $\Phi(x)$ can be written as:

 $$\Phi(x) = \begin{pmatrix} \phi^+(x) \\ (\nu + h(x) + i\chi(x))/\sqrt{2} \end{pmatrix}$$
The classical Lagrangian.

- In the unitary gauge, the Higgs field has the simple form:

\[\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu + h(x) \end{pmatrix} \]
The classical Lagrangian.

- In the unitary gauge, the Higgs field has the simple form:

\[\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \]

- The real part of \(\phi^0, h(x) \), describes physical neutral scalar particles with mass

\[M_H = \mu \sqrt{2}. \]
The classical Lagrangian.

- In the unitary gauge, the Higgs field has the simple form:

\[\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \]

- The real part of \(\phi^0, h(x) \), describes physical neutral scalar particles with mass

\[M_H = \mu \sqrt{2}. \]

- The Yukawa Lagrangian has a following form:

\[\mathcal{L}_{\text{Yukawa}} = -\sum_f m_f \bar{\psi}_f \psi_f - \sum_f \frac{m_f}{v} \bar{\psi}_f \psi_f h \]
The equation of state.

- The stress-energy density tensor $T_{\mu\nu}$:

$$T_{\mu\nu} = 2 \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} - g_{\mu\nu} \mathcal{L}$$
The equation of state.

- The stress-energy density tensor $T_{\mu\nu}$:
 \[T_{\mu\nu} = 2 \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} - g_{\mu\nu} \mathcal{L} \]

- Hamiltonian H
 \[H = \int d^3x T_{00} \]
The equation of state.

- The stress-energy density tensor $T_{\mu\nu}$:
 \[T_{\mu\nu} = 2 \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} - g_{\mu\nu} \mathcal{L} \]

- Hamiltonian H
 \[H = \int d^3x T_{00} \]

- Pressure P_i
 \[P_i = \int d^3x T_{ii} \]
The equation of state.

- The stress-energy density tensor $T_{\mu\nu}$:

$$T_{\mu\nu} = 2 \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} - g_{\mu\nu} \mathcal{L}$$

- Hamiltonian H

$$H = \int d^3x T_{00}$$

- Pressure P_i

$$P_i = \int d^3x T_{ii}$$

- We have to calculate average energy density (ε) and average pressure (P)
The equation of state.

- The complete Lagrangian has the following form:

\[
\mathcal{L} = -\frac{1}{4} W^{a}_{\mu\nu} W_{\mu\nu}^{\mu, a} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \sum \bar{\psi}_L i\gamma^\mu D_{\mu}\psi_L + \sum \bar{\psi}_R i\gamma^\mu D_{\mu}\psi_R \\
+ (D_{\mu}\Phi)^+ (D^\mu \Phi) - V(\Phi) - \sum f m_f \bar{\psi}_f \psi_f - \sum f \frac{m_f}{v} \bar{\psi}_f \psi_f h
\]
The equation of state.

- The complete Lagrangian has the following form:

\[\mathcal{L} = -\frac{1}{4} W_{\mu\nu}^a W^{\mu\nu,a} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \sum \bar{\psi}_L i \gamma^\mu D_\mu \psi_L + \sum \bar{\psi}_R i \gamma^\mu D_\mu \psi_R \]

\[+ (D_\mu \Phi)^+ (D^\mu \Phi) - V(\Phi) - \sum_f m_f \bar{\psi}_f \psi_f - \sum_f \frac{m_f}{v} \bar{\psi}_f \psi_f h \]

- For electron and Higgs:

\[\mathcal{L}_{e,Higgs} = \bar{\psi}_e (i \gamma^\mu \nabla_\mu - m_e) \psi_e + \frac{1}{2} (\partial_\mu h(x))^2 - V(\Phi) \]
The equation of state.

- The complete Lagrangian has the following form:

\[
\mathcal{L} = -\frac{1}{4} W_{\mu\nu}^a W^{\mu\nu,a} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \sum \bar{\psi}_L i \gamma^\mu D_\mu \psi_L + \sum \bar{\psi}_R i \gamma^\mu D_\mu \psi_R \\
+ (D_\mu \Phi)^+ (D^\mu \Phi) - V(\Phi) - \sum_f m_f \bar{\psi}_f \psi_f - \sum_f \frac{m_f}{v} \bar{\psi}_f \psi_f h
\]

- For electron and Higgs:

\[
\mathcal{L}_{e,\text{Higgs}} = \bar{\psi}_e (i \gamma^\mu \partial_\mu - m_e) \psi_e + \frac{1}{2} (\partial_\mu h(x))^2 - V(\Phi)
\]

with

\[
V(\Phi) \sim m_H^2 \left(-\frac{\phi^2}{4} + \frac{\phi^4}{8v^2} \right) + \frac{m_H^2}{4} \left(\frac{\phi^2}{v^2} - 1 \right) h^2(x) + \frac{m_H^2}{8v^2} h^4(x)
\]
The equation of state.

- **Average value** \(< A >\)

\[
\langle A \rangle = \text{Tr}(\rho A), \quad \rho = \frac{1}{Z} e^{-\beta (H - \mu N)} \quad \beta = \frac{1}{K_B T}
\]
The equation of state.

- **Average value** $\langle A \rangle$

$$\langle A \rangle = \text{Tr}(\rho A), \quad \rho = \frac{1}{Z} e^{-\beta(H-\mu N)} \quad \beta = \frac{1}{K_B T}$$

- **Electron field:**

$$\psi_e = \sum_{\alpha=1}^{2} \int \frac{d^3k}{(2\pi)^3 2E} c(\bar{k},\alpha) u(\bar{k},\alpha) e^{-i k x}$$
The equation of state.

- Average value $\langle A \rangle$:

$$\langle A \rangle = \text{Tr}(\rho A), \quad \rho = \frac{1}{Z} e^{-\beta(H-\mu N)} \quad \beta = \frac{1}{K_B T}$$

- Electron field:

$$\psi_e = \sum_{\alpha=1}^{2} \int \frac{d^3k}{(2\pi)^3 2E} c(\bar{k}, \alpha) u(\bar{k}, \alpha) e^{-i k x}$$

- The Higgs field:

$$h(x) = \int \frac{d^3k}{(2\pi)^3 2E} [a(\bar{k}) e^{-i k x} + a^+(\bar{k}) e^{i k x}]$$
The equation of state.

- The partition function for fermions (FD):

\[\langle c^+ c \rangle \sim \frac{1}{e^{\beta(E_k-\mu)} + 1} \]
The equation of state.

- The partition function for fermions (FD):

 \[\langle c^+ c \rangle \sim \frac{1}{e^{\beta(E_k - \mu)} + 1} \]

- The partition function for bosons (BE):

 \[\langle a^+ a \rangle \sim \frac{1}{e^{\beta(E_k - \mu)} - 1} \]
The equation of state.

- The partition function for fermions (FD):

\[\langle c^+ c \rangle \sim \frac{1}{e^{\beta (E_k - \mu)} + 1} \]

- The partition function for bosons (BE):

\[\langle a^+ a \rangle \sim \frac{1}{e^{\beta (E_k - \mu)} - 1} \]

- The mean field approximation:

\[\langle A^2 \rangle \sim \langle A \rangle^2 \]
The equation of state.

- Electron part of average energy density:

\[\varepsilon_e = 8\pi \int_0^\infty d\bar{k} \bar{k}^2 E_k \frac{1}{e^{\beta(E_k - \mu)} + 1} \]
The equation of state.

- Electron part of average energy density:

\[\varepsilon_e = 8\pi \int_0^\infty \, d\vec{k} \, \vec{k}^2 \, E_k \, \frac{1}{e^{\beta (E_k - \mu)} + 1} \]

- The change of variable \(\vec{k} \rightarrow x \):

\[\mu = m_e + \bar{\mu}, \quad x = \beta (E_k - m_e), \quad E_k = \sqrt{\vec{k}^2 + m_e^2}, \quad y = \beta \bar{\mu} \]
The equation of state.

- Electron part of average energy density:

\[\varepsilon_e = 8\pi \int_0^\infty d\bar{k} \ \bar{k}^2 \ E_k \ \frac{1}{e^{\beta(E_k - \mu)} + 1} \]

- The change of variable \(\bar{k} \to x \):

\[\mu = m_e + \bar{\mu}, \quad x = \beta(E_k - m_e), \quad E_k = \sqrt{\bar{k}^2 + m_e^2}, \quad y = \beta\bar{\mu} \]

- Fermi-Dirac integrals:

\[F_j(y) = \int_0^\infty dt \ \frac{t^{\frac{j}{2}}}{e^{(t-y)} \pm 1} \]
The equation of state.

- We can rewrite ε_e

$$
\varepsilon_e = 8\pi (2m_e)^{3/2} (K_B T)^{5/2} \int_{0}^{\infty} dx \frac{x^{3/2} \left(\frac{K_B T x}{2m_e} + 1 \right)^{3/2}}{e^{x-y_e} + 1}
$$

$$
+ 8\pi \sqrt{2} (m_e)^{5/2} (K_B T)^{3/2} \int_{0}^{\infty} dx \frac{x^{1/2} \left(\frac{K_B T x}{2m_e} + 1 \right)^{1/2}}{e^{x-y_e} + 1}
$$
The equation of state.

- We can rewrite \(\varepsilon_e \)

\[
\varepsilon_e = 8\pi (2m_e)^{3/2} (K_B T)^{5/2} \int_0^\infty dx \frac{x^{3/2} \left(\frac{K_B T x}{2m_e} + 1 \right)^{3/2}}{e^{x-y_e} + 1}
\]

\[+ 8\pi \sqrt{2} (m_e)^{5/2} (K_B T)^{3/2} \int_0^\infty dx \frac{x^{1/2} \left(\frac{K_B T x}{2m_e} + 1 \right)^{1/2}}{e^{x-y_e} + 1}\]

- Let’s take very high temperature \(K_B T >> m_e \), then:

\[
\varepsilon_e = 8\pi (K_B T)^4 \int_0^\infty dx \frac{x^3}{e^{x-y_e} + 1} + 8\pi m_e^2 (K_B T)^2 \int_0^\infty dx \frac{x}{e^{x-y_e} + 1}
\]

with

\[
m_e = m_e^{(0)} \frac{\phi}{v}
\]
Similarly, we can calculate $\varepsilon_{\text{Higgs}}$

$$
\varepsilon_{\text{Higgs}} = 2\pi (2m_H)^{3/2}(K_BT)^{5/2} \int_0^\infty dx \frac{x^{3/2} \left(\frac{K_BT x}{2m_H} + 1 \right)^{3/2}}{e^{x-y_H} - 1}
$$

$$
+ 2\pi \sqrt{2} (m_H)^{5/2}(K_BT)^{3/2} \int_0^\infty dx \frac{x^{1/2} \left(\frac{K_BT x}{2m_H} + 1 \right)^{1/2}}{e^{x-y_H} - 1}
$$

$$
+ m_H^2 \left(-\frac{\phi^2}{4} + \frac{\phi^4}{8v^2} \right)
$$

$$
+ \frac{3\pi}{\sqrt{2}} m_H^{5/2} \left(\frac{\phi^2}{v^2} - 1 \right)(K_BT)^{3/2} \int_0^\infty dx \frac{x^{1/2} \left(\frac{K_BT x}{2m_H} + 1 \right)^{1/2}}{e^{x-y_H} - 1}
$$

$$
+ \frac{m_H^7}{4v^2} (K_BT)^3 \left[\int_0^\infty dx \frac{x^{1/2} \left(\frac{K_BT x}{2m_H} + 1 \right)^{1/2}}{e^{x-y_H} - 1} \right]^2
$$

The equation of state.

- Expanding expression in bracket into the series:

\[
\left[\frac{K_B T x}{2 m_H} + 1 \right]^{\frac{n}{2}} \sim 1 + \frac{n}{2} \frac{K_B T}{2 m_H} x
\]
The equation of state.

- Expanding expression in bracket into the series:

\[
\left[\frac{K_B T x}{2m_H} + 1 \right]^n \approx 1 + \frac{n}{2} \frac{K_B T}{2m_H} x
\]

- We will get:

\[
\varepsilon_{Higgs} = m_H^2 \left(-\frac{\phi^2}{4} + \frac{\phi^4}{8v^2} \right) + (\ldots)I_H^{(\frac{1}{2})} + (\ldots)I_H^{(\frac{3}{2})} + (\ldots)I_H^{(\frac{5}{2})}
\]

where \(I_H^{(\frac{i}{2})} \) denotes

\[
I_H^{(\frac{i}{2})} = \int_0^\infty dx \frac{x^{\frac{i}{2}}}{e^{x-y_H} - 1}
\]
The equation of state.

- The polylogarithm functions

\[\text{Li}_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n} \]
The equation of state.

- The polylogarithm functions

\[\text{Li}_n(z) = \sum_{k=1}^{\infty} z^k/k^n \]

- Fermi-Dirac integrals have been calculated using

\[I_{\frac{1}{2}}^{(\frac{1}{2})} = \frac{1}{2} \sqrt{\pi} \text{Li}_{3/2}(e^{y_H}), \quad I_{\frac{3}{2}}^{(\frac{3}{2})} = \frac{3}{4} \sqrt{\pi} \text{Li}_{5/2}(e^{y_H}) \]

\[I_{\frac{5}{2}}^{(\frac{5}{2})} = \frac{15}{8} \sqrt{\pi} \text{Li}_{7/2}(e^{y_H}), \quad \text{with} \ y_H = -m_H/K_BT \]
The equation of state.

• The polylogarithm functions

\[\text{Li}_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n} \]

• Fermi-Dirac integrals have been calculated using MATHEMATICA 5.1

\[I_{H}^{\left(\frac{1}{2} \right)} = \frac{1}{2} \sqrt{\pi} \text{Li}_{3/2}(e^{y_H}), \quad I_{H}^{\left(\frac{3}{2} \right)} = \frac{3}{4} \sqrt{\pi} \text{Li}_{5/2}(e^{y_H}) \]

\[I_{H}^{\left(\frac{5}{2} \right)} = \frac{15}{8} \sqrt{\pi} \text{Li}_{7/2}(e^{y_H}), \quad \text{with } y_H = -m_H/K_B T \]

⇒ integrals \[I_{H}^{\left(\frac{j}{2} \right)} \sim 0 \]
The equation of state.

- Fermi-Dirac integrals for electron part:

\[
I^{(j)}_e = \int_0^\infty dx \frac{x^j}{e^{x-y_e} + 1}
\]
The equation of state.

- Fermi-Dirac integrals for electron part:

\[I_e^{(j)} = \int_0^\infty dx \frac{x^j}{e^{x-y_e} + 1} \]

\[I_e^{(1)} = -\text{Li}_2(-e^{y_e}), \quad I_e^{(3)} = -\text{Li}_4(-e^{y_e}) \]
The equation of state.

- Fermi-Dirac integrals for electron part:

\[I_e^{(j)} = \int_0^\infty dx \frac{x^j}{e^{x-y_e} + 1} \]

\[I_e^{(1)} = -\text{Li}_2(-e^{y_e}), \quad I_e^{(3)} = -\text{Li}_4(-e^{y_e}) \]

\[y_e = \left[\mu - m_e^{(0)} \frac{\Phi}{v} \right] / K_B T \]
The equation of state.

- **Average pressure** P_i:

\[P_i = \frac{8}{3} \pi (2m_e)^{3/2} (K_B T)^{5/2} \int_0^\infty dx \frac{x^{3/2} (\frac{K_B T x}{2m_e} + 1)^{3/2}}{e^{x-y_e} + 1} \]

\[+ \frac{2}{3} \pi (2m_H)^{3/2} (K_B T)^{5/2} \int_0^\infty dx \frac{x^{3/2} (\frac{K_B T x}{2m_H} + 1)^{3/2}}{e^{x-y_H} - 1} \]

\[- \frac{1}{3} m_H^2 (- \frac{\phi^2}{4} + \frac{\phi^4}{8v^2}) \]

\[- \frac{\pi}{\sqrt{2}} m_H^{5/2} (\frac{\phi^2}{v^2} - 1) (K_B T)^{3/2} \int_0^\infty dx \frac{x^{1/2} (\frac{K_B T x}{2m_H} + 1)^{1/2}}{e^{x-y_H} - 1} \]

\[- \frac{m_H^7}{12v^2} (K_B T)^3 \left[\int_0^\infty dx \frac{x^{1/2} (\frac{K_B T x}{2m_H} + 1)^{1/2}}{e^{x-y_H} - 1} \right]^2 \]
Energy density ε as a function of ϕ for $m_H = 115$ GeV, $v = 200$ GeV, $\mu_e = 1$ GeV and $K_B T = 0$ GeV (left) and $K_B T = 20$ GeV (right).
Results.

Energy density ε as a function of ϕ for $m_H = 115$ GeV, $v = 200$ GeV, $\mu_e = 1$ GeV and $K_B T = 0$ GeV and $K_B T > 0$ GeV.
Equation of state P/ε.