ICARUS T600 experiment in the Gran Sasso underground laboratory

Izabela Kochanek

on behalf of ICARUS T600 Collaboration
Institute of Physics, University of Silesia, Katowice
17.09.2011
● The ICARUS T600 detector.

● Physics perspectives.

● Preliminary results from data taken during run 2010.

● Event gallery and reconstruction.

● Summary.
The ICARUS T600 Collaboration

Italy
E.Scantamburlo: Dipartimento di Fisica, University of L'Aquila
B.Baibussinov, M.BaldoCeolin, S.Centro, D.Dequal, C.Farnese, A.Fava, D.Gibin, A.Guglielmi, G.Meng, F.Pietropaolo, F.Varanini, S.Ventura: Dipartimento di Fisica e INFN, Università di Padova, Padova
P.Benetti, E.Calligarich, R.Dolfini, A.Gigli Berzolari, A.Menegoli, C.Montanari, A.Rappoldi, G.L.Raselli, M.Rossella: Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Pavia
F.Carbonara, A.G.Cocco, G.Fiorillo: Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli
A.Cesana, P.Sala, A.Scaramelli, M.Terrani: INFN, Sezione di Milano e Politecnico, Milano
G.Mannocchi, L.Periale, P.Picchi: Laboratori Nazionali di Frascati (INFN), Frascati
F.Sergiampietri: Dipartimento di Fisica, Università di Pisa, Pisa

Poland
K.Cieślik, A.Dąbrowska, M.Harańczyk, T.Wąchała, M.Szarska, A.Zalewska: The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Kraków
T.Golan, J.Sobczyk, J.Żmuda: Institute of Theoretical Physics, Wrocław University, Wrocław
J.Holeczek, J.Kisiel, I.Kochanek, S.Mania: Institute of Physics, University of Silesia, Katowice
P.Płoński, K.Zaremba: Institute for Radioelectronics, Warsaw University of Technology, Warsaw

USA
D.B.Cline, S.Otwinowski, H.-G.Wang, X.Yang: Department of Physics and Astronomy, University of California, Los Angeles

Russia
A.Dermenev, S.Gninenko, M.Kirsanov: INR RAS, Moscow

Switzerland
A.Ferrari: CERN, Geneva
The detection technique

The **Liquid Argon Time Projection Chamber** (LAr-TPC), first proposed by C.Rubbia in 1977 [C.Rubbia: CERN-EP/77-08 (1977)] – is a powerful detection technique that can provide a 3D imaging of any ionizing event

- continuously sensitive, self triggering
- high resolution and granularity
- excellent calorimetric properties

Electrons from ionizing track are drifted in LAr by uniform electric field. They traverse the transparent wire arrays oriented in different directions where induction signals are recorded. Finally electron charge is collected by the third collection plane.

Key requirement: LAr purity form electro-negative molecules (O_2, H_2O, CO_2), Target: 0.33 ppb O_2 equivalent = 1ms lifetime (1.5m drift @ $E_{drift} = 500$ V/cm).
ICARUS @ LNGS
A novel instrument for neutrino physics

- Two identical T300 modules (2 chambers for each module)
- LAr active mass 476t:
 - \((17.9 \times 3.1 \times 1.5\) for each TPC\)m\(^3\)
 - max drift length = 1.5m
 - \(E_{\text{drift}} = 0.5\text{kV/cm}, v_{\text{drift}} = 1.6\text{mm/\mu s}\)
 - HV = -75kV

- 3 readout planes/chamber at 0\(^\circ\), ±60\(^\circ\), 3mm plane spacing:
 - 53248 wires with length up to 9m, 3mm pitch
 - 2 induction planes, 1 collection

- PMT for scintillation light:
 - \((20 + 54)\) PMTs, 8” Ø
 - sensible to VUV scintillation light (\(\lambda = 128\text{nm}\)) by applying a wavelength shifter layer (TPB - tetraphenyl-butadiene)
Main technological challenge – to ensure and maintain a high LAr purity level. Electronegative contaminants (mainly O$_2$, H$_2$O and CO$_2$) attenuate ionization signal!

$\tau_{\text{ele}} \text{ [ms]} = 0.3/N \text{ [ppb O}_2\text{ equivalent]}$

currently: $\tau_{\text{ele}} \sim 6 \text{ [ms]}: \sim 50\text{ppt}$
CNGS – Cern project for a neutrino beam to Gran Sasso

\[p + C \rightarrow \text{(interactions)} \rightarrow \pi^+, K^+, (\mu^+) \rightarrow \text{(decay in flight)} \rightarrow \mu^+ + \nu_\mu \]

Energy distribution of \(\nu_\mu \) fluence

\[<E> \sim 17\text{GeV} \]

\[\nu_e/\nu_\mu \sim 0.8\% \]

\[\bar{\nu}_e/\nu_\mu \sim 2.1\% \]

\[\bar{\nu}_e/\nu_\mu \sim 0.07\% \]
The trigger system relies on the scintillation light signals provided by the internal PMTs and on the SPS proton extraction time for the CNGS beam.

For every CNGS cycle 2 proton spills, lasting 10.5μs each, separated by 50ms, are extracted from SPS machine.

The discrimination thresholds for the PMT sum signal have been set at ~90phe (West) and ~110phe (East), during a 60μs spill gate.

The residual 2.4ms delay is in agreement with the neutrino t.o.f. (2.44ms) taking into account the timing signal propagation delay to Hall B (~44μs)
ICARUS T600 physics potential

- **ICARUS T600**: major milestone towards realization of large scale LAr TPC detector.

- CNGS neutrino events collection (beam intensity 4.5×10^{19} pot/year, $E_\nu \sim 17.4$ GeV):
 - $1200 \, \nu_\mu$ CC events/year,
 - $\sim 8 \, \nu_e$ CC event/year,
 - observation of ν_τ events in the electron channel, using kinematic criteria,
 - search for sterile neutrinos in LSND parameter space (deep inelastic ν_e CC events excess).

- *Self triggered* events collection:
 - ~ 80 events/year of unbiased atmospheric ν CC,
 - zero background proton decay with 3×10^{32} nucleons for exotic channels.
CNGS runs during 2010

ICARUS fully operational for CNGS events since October 1st 2010

October 1st to November 22nd 2010: 8x10^{18} (5.8x10^{18}) pot delivered (collected). Detector lifetime up to 90% since Nov. 1st.

<table>
<thead>
<tr>
<th>EVENT TYPE</th>
<th>COLLECTED</th>
<th>EXPECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{μ} CC</td>
<td>114</td>
<td>129</td>
</tr>
<tr>
<td>ν_{μ} NC</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>ν_{e} CC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ν XC*</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>167</td>
<td>171</td>
</tr>
</tbody>
</table>

* Events at edges, with μ track too short to be visually recognized: further analysis needed.
Preliminary results of CNGS 2010 neutrino interactions

Calorimetric measurement of the deposited energy

![Graph showing calorimetric measurement of deposited energy with data and MC comparison.]

- MC: n=727; μ=8.917; σ=8.638;
- Data: n=105; μ=9.77; σ=9.797;
Preliminary results of CNGS 2010
muons interactions

- Zenithal and azimuthal distribution of muons from CNGS interactions in the Gran Sasso rocks

- Measurement of muons momentum from multiple scattering

The reconstructed average is 86.3 ± 0.3 degree, in fair agreement with expectations
Beam restarted on March 19\(^{th}\).

3.74x10\(^{19}\) (3.46x10\(^{19}\)) pot delivered (collected) up to August 28\(^{th}\).

Detector live-time improved (> 90%) due to more stable running conditions.

Trigger: PMT signal summed for each chamber (100 phe threshold), within 60\(\mu\)s beam gate
CNGS CC neutrino interaction with signal in both TPC chambers

Run 9802 Event 1054
15.10.2010, 19:12
\(\tau_e = 4599 \mu s \)
CNGS CC neutrino interaction in the rock

Predicted number of collected interactions in the rock:

$$7.8 \times 10^{-17} \text{ /pot}$$
CNGS NC neutrino interaction candidate

Run 9704 Event 693
16.09.2010, 22:12
\[\tau_e = 2750 \mu s \]
CNGS CC neutrino interaction with π^0 production

Run 9927 Event 1462
14.11.2010, 12:53
$\tau_e = 6689 \mu s$

The total deposited energy ~ 1GeV
In the 2010 analyzed sample a ν_eCC candidate has been identified, presumably coming from the intrinsic ν_e beam contamination.

This event has 45 GeV total energy with a single powerful e.m. shower at the vertex of about 37 GeV, and with a longitudinal profile peaking at the expected position (~88 cm).
ICARUS T600 TPC reconstruction performances

CASCADES:

➔ The total energy of the cascades is measured by charge integration with recombination correction.

Very good e/π^0 separation by means of dE/dx in the first part of the cascade.
NC π^0 background rejected at 0.1% level while keeping 90% of ν_e CC.

ENERGY RESOLUTIONS:

Low energy electrons $\sigma(E)/E = 11\% / \sqrt{E(\text{MeV})} + 2\%$
Electromagnetic showers $\sigma(E)/E = 3\% / \sqrt{E(\text{GeV})}$
Hadronic shower (pure LAr) $\sigma(E)/E \sim 30\% / \sqrt{E(\text{GeV})}$

TRACKS:

➔ Momentum of high energy particles is measured via multiple scattering:
$\Delta p/p \sim 10-15\%$ depending on track length and p

➔ Stopping particles energy is measured by charge integration with recombination correction

➔ Stopping particle identification by means of dE/dx vs E
ICARUS T600 spatial reconstruction

- **2D tracks reconstruction** on different views
 - hit finding \rightarrow ADC pulse position (drift time) and charge reconstruction (Collection)
 - forming 2D objects (tracks, cascades) from hit

- **3D reconstruction**: complement of 2D tracks reconstruction
 - based on Polygonal Line Algorithm (PLA)
 - the procedure of sorting hits along 2D tracks independently in each view
 - As a result of the **PLA application**
 - PLA-FIT through hits of a track both hits and hit projections to the fit are sorted along the track
Particle identification is based on:
- \(\frac{dE}{dx} = f(E) \) dependency
- reconstructed 3D track segments: dx
- charge deposition on the track segment: dE

Theoretical \(\frac{dE}{dx} (E) \) curves
Fully reconstructed CNGS NC event interaction with \(\eta \) created in the primary vertex

Run 9962 Event 2276

\[t_0 = 1439, \nu_{\text{drift}} = 1.589 \text{ mm/\mu s} \]
\[\tau_e = 7163 \mu s \]

\[M^*_{\gamma\gamma} = 512 \pm 39 \text{ MeV} \]
\[p_\eta = 2066 \text{ MeV/c} \]
\[p_t = 722 \text{ MeV/c} \]

The conversion distances are: 26 cm, 12 cm.
Example of fully reconstructed CNGS NC neutrino interaction

Run 9814 Event 1012

- $t_0 = 1439$, $v_{\text{drift}} = 1.589 \text{ mm/\mu s}$
- $\tau_e = 7163 \mu s$

Deposited energy is 1.07 GeV
Example of fully reconstructed CNGS NC neutrino interaction

Deposited energy is 1.37 GeV

<table>
<thead>
<tr>
<th>TRACK</th>
<th>E_{dep} [MeV]</th>
<th>p [MeV/c]</th>
<th>range [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9(p)</td>
<td>110±9</td>
<td>467±20</td>
<td>13</td>
</tr>
<tr>
<td>10(K)</td>
<td>120±10</td>
<td>365±17</td>
<td>9</td>
</tr>
<tr>
<td>11(μ)</td>
<td>161±14</td>
<td>573±27</td>
<td>53</td>
</tr>
<tr>
<td>12(e)</td>
<td>26±2</td>
<td>27±2</td>
<td>11</td>
</tr>
<tr>
<td>13(p)</td>
<td>151±13</td>
<td>553±26</td>
<td>11</td>
</tr>
<tr>
<td>14(p)</td>
<td>142±12</td>
<td>535±24</td>
<td>12</td>
</tr>
<tr>
<td>15(pi)</td>
<td>141±12</td>
<td>243±14</td>
<td>50</td>
</tr>
</tbody>
</table>
Example of fully reconstructed CNGS NC neutrino interaction

\[E_{k16a} = 102 \pm 10 \text{ MeV} \]
\[p_{16a} = 195 \pm 12 \text{ MeV}/c \]

\[E_{k16b} = 685 \pm 25 \text{ MeV} \]
\[p_{16b} = 809 \pm 25 \text{ MeV}/c \]

\[p_{\pi^0} = 912 \pm 26 \text{ MeV}/c \]
\[m_{\pi^0} = 128 \pm 20 \text{ MeV}/c^2 \]

\[\theta = 28.0 \pm 2.5^o \]

The conversion distances are:
6.2cm, 66.8cm
ICARUS T600 @ LNGS is taking data with CNGS beam since October 2010.

The successful assembly and operation of the LAr-TPC is the experimental proof that this technique is well-suited for large scale experiments.

The unique imaging capability of ICARUS, its spatial/calorimetric resolutions, allow to reconstruct and identify events in a new way with regard to previous/current experiments.

The 2011-2012 run with CNGS ν_μ beam will allow to possibly detect few ν_τ appearance events. Interesting physics perspectives also for solar and atmospheric neutrinos, sterile neutrino and proton decay.

The ICARUS experiment at the Gran Sasso Laboratory is so far the major milestone towards the realization of a much more massive LAr detector.